- / / /= /;e

43440/

NASA Contractor Report 189065 p ;\
Developments in Variational Methods
for High Performance Plate
and Shell Elements

(NASA-CR-189065) ;;FLOPMENTS InN N92-13463

VARTATIONAL METHODS FOR HIGH ?EgFgg:iNcsun-

e e torais Univey 275 chel 20K Unct as

G3/39 0053401

Carlos A. Felippa and Carmelo Militello
University of Colorado
Boulder, Colorado

November 1991

Prepared for

Lewis Research Center
Under Grant NAG3-934

NANASAN

National Aeronautics and
Space Administration






DEVELOPMENTS IN VARIATIONAL METHODS FOR
HIGH PERFORMANCE PLATE AND SHELL ELEMENTS

CARLOS A. FELIPPA
CARMELO MILITELLO

Department of Acrospace Engineering Sciences
and Center for Space Structures and Controls
University of Colorado
Boulder, Colorado 80309-0429, USA

ABSTRACT

High performance elements are simple finite elements constructed to deliver engi-
neering accuracy with coarse arbitrary grids. This paper is part of a series on the variational
foundations of high-performance elements, with emphasis on plate and shell elements con-
structed with the free formulation (FF) and assumed patural strain (ANS) methods. In the
present paper we study parametrised variational principles that provide a common founda-
tion for the FF and ANS methods, as well as for a combination of both. From this unified
formulation a variant of the ANS formulation, called the assumed natural deviatoric strain
(ANDES) formulation, emerges as an important special case. The first ANDES element: a
high-performance 9-dof triangular Kirchhoff plate bending element, is briefly described to
illustrate the use of the new formulation.

1. INTRODUCTION

For 25 years researchers have tried to construct “best” finite element models for
problems in structural mechanics. The quest appeared to be nearly over in the late 1960s
when high order displacement elements dominated the headlines. But these elements did
not dominate the marketplace. The overwhelming preference of finite element code users
has been for simple elements that deliver engineering accuracy with coarse meshes. These
will be collectively called Aigh performance clements, or HP elements for short.

1.1  Attributes of HP Elements

Approaching that general goal gives rise to a myriad of more concrete requirements,
which are supposed to be addressed in higher or lesser degree during element development.
Such requirements are listed in Table 1.

Some of these requirements are obvious. For example, low distortion sensitimty is
a consequence of trying to achieve satisfactory accuracy with arbitrary meshes. But other
items listed in Table 1 call for some explanation.
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Table 1. Target Requirements for High-Performance Elements

e Simple: few freedoms, all physical, preferably at corners only
s Convergent

e Frame invariant

e No locking

e Rank sufficient: no spurious modes

e Balanced stiffness: not too rigid, not too flexible

e Stresses as accurate as displacements

e Low distortion sensitivity

e Mixable with other elements

e Economical to form

o Easily extendibl; to noniinear and dynamic analysis

e FEffective local error estimator for mesh adaptation

The first and foremost requirement is that the element be as simple as possible.
This is in sharp contrast to the *baroque FE period® of 1985-1975 that lauded luxuriantly
ornate elements and culminated with the development of very complex models, including
elements with nonphysical degrees of freedom. One source of this retrenchment has been
feedback from users of general-purpose finite element programs. As use of these programs
expands to more engineers without deep knowledge of “what’s inside the black box” the
trend in finite element model construction has veered towards the ®simplest elements that
will do the job.” Further impetus is provided by the gradual realisation that high accuracy
of complex elements in linear elastostatics does not necessarily carry over to dynamic and
nonlinear analysis.

The balanced stiffness requirement also deserves comment. It follows from the goal
of attaining reasonable accuracy with coarse meshes. This is illustrated in Fig. 1, which
shows a convergence study of a classical model problem: the bending of a simply-supported
" “square plate under a concentrated central load. The mesh contains 2 x N x N triangles
over a plate quadrant. A target “accuracy band” of £1% is taken, somewhat arbitrarily,
as representative of engineering accuracy for this rather simple problem. The convergence
characteristics of several triangular elements are taken from the extensive study reported
in Ref. 2. Although most elements converge, some are too stiff while others are too flexible,
and generally do not enter the accuracy band until the mesh is fairly refined (¥ 2 8). On
the other hand, the results labeled ‘FF, obtained with a plate element based on the free
formulation (FF) discussed later, lie within the band for all meshes.

The balanced-stiffness requirement should not be confused with fast asymptotic
convergence for fine meshes. Simple elements cannot effectively compete with higher or-
der elements in this regard, and are not effective in applications that demand very high
accuracy. What is important is Aow good are the results for coarse meshes.
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Figure 1. Convergence study of several plate bending triangular elements
as reported in Ref. 2. The FF results are from Ref. 8.

1.2  Constructing HP Elements

The search for high-performanos (HP) elements began seriously in the mid 1970s and
by now it represents an important area of finite element research in solid and structural
mechanics. Many ingenious schemes have been tried: reduced and selective integrationm,
incompatible modes, mixed and hybrid formulations, stress and strain projections, the free
formulation (FF), and the assumed natural strain (ANS) formulation. Many researchers
are presenly working to develop such elements. The common theme of the investigations is

Abandon the conventional displacement formulation

Several techniques used by researchers in their quest to build better elements are
itemised in Table 2. It may be noted that many of these were introduced over 20 years ago.
But it is only recently that a concerted effort is made to combine several tools to produce
HP elements. For example, the present work draws on items 1, 2, 3, 8, 10, 11 and 12 of

Table 2.



Table 2. Tools of the Trade

Technigue Year introduced

1.  Incompatible shape functions early 1960s
2.  Patch test 1965
3.  Mixed and hybrid variational principles 1965
4.  Projectors 1967
5. Selective reduced integration 1969
6.  Uniform reduced integration 1970
7.  Assumed strains 1970
8. Energy balancing 1974
9. Directional integration 1978
10. Limit differential equations 1982
11. Free formulation 1984
12. Assumed natural strains 1984

1.3 Objective of Present Work

This paper is part of a series (Refs. 9-12, 15-16) that studies how several HP element
construction methods can be embedded within an eztended variational framework that uses
parametrised hybrid functionals. Particular attention is focused on merging the last two
items in Table 2.

The general plan of attack for this unification is flowcharted in Fig. 2. Box connec-
tions indicated with dashed lines are not dealt with in the present work. The variational
extensions, shown on the left of Fig. 2, involve parametrisation of the conventional elastic-
ity functionals and treatment of element interfaces through generalizations of the hybrid
approach of Refs. 20-23.

The effective construction of HP elements relies on devices, sometimes derisively
called *tricks” or “variational crimes,” that do not fit @ priori in the classical variational
framework. The range of tricks spans innocuous collocation and finite difference constraints
to more drastic remedies such as selective integration. Despite their unconventional nature,
tricks are an essential part of the construction of high-performance elements. Collectively
they represent a fun-and-games ingredient that keeps the derivation of HP finite elements
a surprisingly enjoyable task.

The present treatment «Jecriminalises® kinematic constraint tricks by adjoining
Lagrange multipliers, hence setting out the ensemble on proper variational foundations.
Placing formulations within a variational framework has the great advantage of supplying
the general structure of the stiffness matrices and forcing vectors of high performance ek
ements, and of providing theoretical coherence for the systematic derivation of classes of
elements by a combination of techniques.
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Figure 2 Program of attack for variational formulation of HP elements

2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that occupies the volume V. The
body is bounded by the surface S, which is decomposed into S : SqU Se. Displacements are
prescribed on Sgq whereas surface tractions are prescribed on S,. The outward unit normal

on S is denoted by n = n;.
The three unknown volume fields are displacements @ = u;, infinitesimal strains
e = ¢;;, and stresses ¢ = 0;;. The problem data include: the body force field b = by in V,

prescribed displacements d = d; on Sy, and prescribed surface tractions t = {; on 5..
The relations between the volume fields are the strain-displacement equations

e=3(Vu+ VTu)=Du or ¢&;= Lu; +uj;) in v, (1)
the constitutive equations
og=Ee or i = 5kl Ckl in V, (2)
which will be assumed to be invertible, and the equilibrium (balance) equations

~dive=D"¢=b or oy +b=0 inV, (3)
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in which D* = —div denotes the adjoint operator of D = v+ V)
The stress vector with respect to a direction defined by the unit vector v is denoted
as 0, = 0.V, OF Oyi = Ojvj. On S the surface-traction stress vector is defined as

Gnm €D, OF Opi=0iiNy. (4)
With this definition the traction boundary conditions may be stated as
e.=t or oynj=H om S, (5)
and the displacement boundary conditions as

u=d or u‘=1; on Sq. _ (6)

8. NOTATION

3.1  Field Dependency

In variational methods of approximation we do not work of course with the exact
fields that satisfy the governing Eqs. 1-3 and 5-6, but with independent (primary) fields,
which are subject to variations, and dependent (secondary, associated, derived) fields, which
are not. The approximation is determined by taking variations with respect to the inde-
pendent fields. , a

Following the notation introduced in Refs. 9 and 10, an independently varied field
will be identified by a superposed tilde, for example . A dependent field is identified by
writing the independent field symbol as superscript. For example, if the displacements are
independently varied, the derived strain and stress fields are

e =3(V+VT)a=Dd, " =Ee*=EDG (n
An advantage of this convention is that u, e and ¢ may be reserved for the ezact fields.

3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted
parentheses and square brackets, respectively, around the integrand. For example:

iy & /v fav, |fls ¥ /3 £ds, (fls. & [s fds, [fls. & fs fds.  (8)

If £ and g are vector functions, and p and q tensor functions, their inner product over V' is
denoted in the usual manner

fgv & fv fgdV = /v fiwdV,  (may & /; p-qdV = /; pisqi; v, (9)

and similarly for surface integrals, in which case square brackets are used.
3.3  Domain Assertions

The notation

(a=2b)v, [a= bs, [a=8]s. [a=23s, (10)

" is used to assert that the relation a = b is valid at each point of V', §, 54 and S, respectively.

6



Figure 3. Internal interface exampla.

3.4 Internal Interfaces

In §4-5 we construct hybrid variational principles in which boundary displacements d
can be varied independently from the internal displacements u. These displacements play
the role of Lagrange multipliers that relax internal displacement continuity. Variational
principles containing d will be called diaplccemcnt-gcneralizcd, or d-generalised for short.

The choice of d as independent field is not variationally admissible on Sy or St. We
must therefore extend the definition of boundary to include snternal interfaces collectively
designated as S;. Thus

S:854US8:.US;. (11)

On S; neither displacements nor tractions are prescribed. A simple case is illustrated
in Fig. 8, in which the interface S; divides V into two subvolumes: V+ and V~. An interface
such as S; on Fig. 3 has two “sides” called S;" and 57, which identify S; viewed as boundary
_ of V+ and V—, respectively. At smooth points of S; the unit pormals nt and n~ point in
opposite directions.

The integral abbreviations of Eqs. 8-9 generalize as follows, using Fig. 3 for definite-
ness. A volume integral is the sum of integrals over the subvolumes: '

([ g+ f v (12)

An integral over S; includes two contributions:
(ols, & f gtdS+ / g~ dS, (13)
st s

where g* and g~ denotes the value of the integrand g on S} and S, respectively. These

two values may be different if ¢ is discontinuous or involves a projection on the normals.
The appearance of 5; is a natural consequence of use of finite elements with discon-

tinuous displacements. Following a finite element discretisation, the union of interelement
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boundaries becomes S;. This boundary is generally nonphysical because it depends on the
discretisation.? -

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form
N=U-P (14)

where U characterises the internal energy stored in the body volume and P includes other
contributions such as work of applied loads and energy stored on internal interfaces., We
shall call U the generalized strain energy and P the forcing potential.

The functionals considered in this section include independently varied displace-
ments. The class of dual functionals such as the complementary energy are briefly covered
in §5.5 for completeness, but are not required in the finite element developments of §6ff.

4.1  Generalised Strain Energy

The generalised strain energy has the following structure:
U = b (e +512(3,8v + 713(3,€*)v + 3i2a(0®, &)y + as(0, %)y + a8 (’“’e;)v)
15

where j;; through j3s are numerical coefficients. For example, the Hu-Washisu principle
is obtained by setting f1z = ~1, 513 = 1, #22 = 1, all others being zero. The matrix
representation of the general functional Eq. 15 and the relations that must exist between
the coefficients are studied in §5.1.

42 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume
integral of Eq. 15 with the forcing potential P. Two forms of the forcing potential, called
P94 and P* in the sequel, are of interest in the hybrid treatment of interface discontinuities.
The d-generalised (displacemenbgeneralised) forcing potential introduces, as anticipated
in §3.4, an independent boundary displacement field & over Si:

(3, 5,) = (b, &)y +[5ar 8~ s, + [E8ls, +[7a,8 = dls,- (16)

The t-generalised (traction generéli:ed) forcing potential introduces an indepen-
dently varied traction displacement field t over S;:

P (8,5, = (b, 8)v + (£, 8- s, + [E,dls, + [E b5, (17)
The “conventional® form P? of the forcing potential is obtained if the interface
integral vanishes and one sets [t = o,]s. If 20 Pt and P? coalesce into P¢, which retains

only two independent fields:

P°(d,3) = (b, &)y +[7a,8 — dls, + [, d]s,. (18)

! 1f there are physical internal interfaces — for example a sudden thickness or material change —
it is common practice to select the mesh so that these natural interfaces are also interelement

boundaries.



43 Modified Forcing Potentials -

Through various manipulations and assumptions detailed in Ref. 10 the t—'orcing
potential P4 may be transformed to

Pi(#,5,d) = (b,8)v +[t,dls, + [#n, 8- d)s. (19)

where the all-important surface dislocation integral is taken over S rather than S;. One of
the assumptions is that displacement boundary conditions, Eq. 8, are exactly satisfied on
Sg. This expression of P¢ is used in the sequel. A similar technique can be used to adjust
P*, but that modified formula will not be required in what follows.

44 Complete Functionals

Complete elasticity functionals are obtained by combining the generalised strain
energy with one of the forcing potentials. For example, the d and ¢ generalised versions of
the Hu-Washisu functionalare ____ _ | -

ﬂg,=Uw—Pd, H‘WSUW—P‘. (20)
where Uy is obtained by setting %3 = jis =1, 12 = —1, others sero, in Eq. 15.

5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generalized strain energy of Eq. 15 can be presented in the matrix form

Aun sia as| [
U=§f(tc-c-)[ j”j”]{i}dV. (21)
v symm Jas e

The symmetric matrix?
m s 5
I=|hs B2 2 (22)
s s s
characterises the volume portion of the variational principle. Using the relations ¢* = Ee,

¢* = EDq, e = E™10s, and e* = D, the above integral may be rewritten in terms of the
independent fields as

mE™ sl 713D &
=3[ 8 0|l mE  mED |fEia 09
v j1sDT  7DTE #sDTED] (&

2 To justify the symmetry of J note, for example, that fis(7,e%)v = 1515(0,e%)v +
151s(e®,0%)v, and so on.



51 First Variation of Generalized Strain Energy

The first variation of Eq. 15 may be presented as
§U = (Ae,63)y + (As, 68)y — (div e, 8d)y + |, 68]s, (24)
where . L
Ae = ji1e? + j12€ + f1se”,
Ae = j12¥ + 108 + hase”, (25)
& = j13& + 1230° + Jase”.
The last two terms combine with contributions from the forcing potential variation.
For example, if P = P° the complete variation of 1= U — P is

STI° = (Ae, §3)v + (As,68)v — (dive’ +D, 58y + ¢, — £ 6ds, — [G— 4, 65als,. (26)

Using P4 or P* does not change the volume terms. The first variations of IT1¢ and
IT* are studied in Refs. 9-11 for a more restrictive class of functionals, namely IL,. The
Euler equations associated with the volume terms

Ae=0, Ae=0, divd+b=0, (27)

are independent of the forcing potential. A “weighted residual® interpretation of Eqs. 27 in
terms of the field equations is given in §5.4. For the moment we note that for consistency
of the Euler equations with the field equations of §2 we must have Ae=0,Aec=0and
¢’ = o if the assumed stress and strain Gelds reduce to the exact ones. Consequently

m+haz+ns=0
futia+hs=0, (28)
Jist+hstns=1

Because of these constraints, the maximum number of independent parameters that
define the entries of J is three.

5.2  Specific Functionals -

Expressions of J for some classical and parametrised variational principles of elas-
ticity are tabulated below. The subscript of J is used the identify the functionals, which
are listed roughly in order of ascending complexity. The fields included in parentheses after
the functional name are those subject to independent variations in V.

Potential energy (i):

0 00
Jp=]0 0 0f. (29)
001
Stress-displacement Reissner, also called Hellinger-Reissner, (#, G):
[-101
JR = 0 0 O}. (30)
1 00
Unnamed stress-displacement fanctional listed on p. 118 of Ref. 18 (7,G):
10 -1
Jy=| 0 0o of. (31)
-1 0 2
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Figure 4 Graphical representation of the J, 44 functionals

Strain-displacement Reissner-type as listed on p. 116 of Ref. 18 (&,1):
0 00 .
Jg=|0 -1 1]. (32)
0 1 0

0 -1 1
Jw=]|-1 1 0j. (33)
1 00

One-parameter stress-displacement family (,1) that includes Up, Ur and Uy as
special cases (Refs. 8-10) ]

Hu-Washisu® (5, &,1):

-y 0 7 ]
J3,=|/0 o o |. (34)
L7 0 1-7]

One-parameter strain-displacement family (&, @) that includes Up and Ug as special
cases (Ref. 9)

o o 0]
Jg=|0 -8 B |- (35)
0 8 1-8]

3 There are several functionals that carry this name, transformable from one to another through
integration by parts. That corresponding to Jw is the third form listed in §2.3 of Ref. 24.
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_that the 5 coefficients may vary from element to element.

Two-parameter family (#,&, @) that includes Up and U, as special cases (Ref. 9):
Jpy=(1-8)3,+ (13— (1-B-1Nr
—(1-8) 0 7(1 - B) 36
= [ o -p(1-1) B(1-1) ] . (s¢)
4(1-8) BQ-4) 1-B-1+2B
Three-parameter (a, 8, 7) family (, &, G) that includes Uw and Up, a8 special cases
(Ref. 9):

Japy =alw + (1~ a)dse
—(1-)(1-a) -a a+q(1-8)(1-a) (s7)

- ~-a a—pg(1-9)(1-a) A(1-1)(1-a) .

a+q(1-F)(1-a) All-1)(1-e) (1-f—-v+281)(1-a)

The last form, which contains three independent parameters, supplies all matri-
ces J that satisfy the constraints of Eq. 28. It yields stress-displacement functionals for
a = f = 0, strain-displacement functionals for a = 7 = 0, and three-field (stress-strain-
displacement) functionals otherwise. A graphic representation of this functional in (a, 8,7)
space is given in Fig. 4. ’

The specialisation y=1, §=0 of Japy is of particular interest:

a-1 —-a 1
Ja=| —a a O}. (38)
1- 0 O

The associated functional IT, might be called the *gencralised® Hu-Washisu func-
tional since it reduces to Jw for a = 1. But because of its special relation with the ANDES
formulation covered in §8-11, IT, will be herein referred to as the ANDES functional.

5.3  Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is opti- '

misation of finite element performance in the balanced-stifiness sense of Table 1. The
determination of “best” parameters for specific elements relies on the concept of energy
balance. Let U(c) = 4(E¢, ¢Jv denote the strain energy associated with the strain field e.
If E is positive definite, U(¢) is nonnegative. We may decompose the generalised strain
energy into the following sum of strain energies:
U = U(e®) + will(e” — &) + wall(@—e®) + wyl(e® — &%), (39)
where Up(e*) = Up is the usual strain energy, and*
oy = L +in—ss+1), wi=b(-jutin+ie-1), ws=}lu—sntss=1). (40)
Eq. (39) is equivalent to decomposing J into the sum of four rank-one matrices:

0 00 1 -1 0 o 0 O 1 0 -1
J=10 0 0l+w -1 1 Oj+wz|0 1 -1} +ws 0 0 0]. (41)
0 01 0 00 0 -1 1 -1 0 1

Decompositions of this nature can be used to derive energy-balanced finite elements
by considering element *patches” under simple load systems. This technique is discussed
for the one-parameter functionals generated by J, in Refs. 6, 8-11. It is important to note

4 Ag shown in §5.4, these coefficients may be interpreted as field-equation-residual weights,
hence the notation. It is conjectured that for stability the j coefficients should be confined
gso that w; > 0, but this remains to be proven.
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5.4 Interpretation of Euler Equations N
Eqs. 27 gain physical meaning if they are rewritten as

Ae = wy(e” — &) + wy(e® — e‘)r =0,
Ae = vy (7 - ¢°) + wa(¢* - ¢") =0, (42)
dive -div[c'+wa(¢‘—c")+w;(c'—i)] = -b,

where the w; are given by Eqgs. 40. But e -8=Eli-&§=0aswllas ¢ =
#—E& = 0 are representations of the constitutive equations, Eqs. 2. Likewise, ¢* — ¢* =
E(é-Di)=01isa representation of the strain-displacement equations, Eqs. 1. Finally,
e*—e” =Di—E'd=0,as well as ¢* — & = 0, are combinations of Eqs. 1-2. Thus
we conclude that the Euler equations Ae = 0 and As = O are weighted forms of the
kinematic and constitutive field equations. On the other hand, dive’+b=0isa weighted
combination of the equilibrium equations, Eqs. 3, and the other two. :

If the j coeflicients are such that a weight vanishes (see also footnote 4), that partic-
ular field equatien drops out from the Euler equations and must be viewed as being satisfied
a priori For example, in the potential energy fanctional, w; = wy =ws =0 and only the
equilibrium condition in terms of ¢ remains in the Euler equations. This interpretation
points the way for constructing U of Eq. 15 by the method of weighted residuals.

5.5 Functionals without Independent Displacements

The foregoing theory applies to functionals where the displacements u are indepen-
dently varied. Although this case includes the more practically important functionals for
our purposes, for completeness we present here the general parametrisation of stress-strain
functionals, Decompose U of Eq. 15 as U, + U,, where U, contains the strain energy due
to displacement-derived strains:

Uy = (j1s% + fas#* + 3isse™,e%)v = (div e, u)y = [on,uls- (43)

If we now assume that the equilibriam equationsdive+b =0 and traction boundary
conditions @, = & hold & priori, Uy may be dropped and we are left with the generalized
complementary energy functional

U—U,=3u(a¢)+ 512(#, &)y + 3ha(e*, @)v. (44)
Taking account of the a prioni conditions, the first variation becomes

U, = (juc' + f12€ + e*, 55’)V + (j;gl-l-jn“, 85)\[, (45)

-and for consistency we must have ji1 + f1a=-1, 512+ 723 =0. It follows that U, may be

represented as in the matrix form of Eq. 21 with a J that depends on a single parameter:

p-1 —-p O
J,=| - » 0O}. (46)
o 0 0

Here p = 0 gives the classical principle of total complementary energy whereasp =1
gives the functional N(7, &) listed on p. 117 of Ref. 18.

6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretisation of the func-
tional TI¢ for arbitrary J are stated. Following usual practice in finite element work, the
components of stresses and strains are arranged as one-dimensional arrays while the elastic
moduli in E are arranged as a square symmetric matrix. In the sequel, and unless otherwise
noted, we consider an indsvidual element of volume V and surface S : S¢ U SqU S;, where

-S; is the portion of the boundary in common with other elements. :

13



6.1 Boundary Displacement Assumption

The boundary displacement assumption is
[& = Ngvls. (‘7)

Here matrix Ny collects boundary shape functions for the boundary displacements
d while vector v collects the ®visible® degrees of freedom of the element, also called the
connectors. These displacements must be unique on common element boundaries. This
continuity condition is met if the displacement of a common boundary portion is uniquely
specified by degrees of freedom located on that boundary. There are no derived fields
associated with d.
6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is

(&= Nug)v, (48)

where matnx N, collects the internal displacement shape functions and vector q collects
generalised coordinates for the internal displacements. The assumed & need not be contin-
uous across interelement boundaries. The displacement derived fields are

(e* = DNq=Bq)v, (¢*=EBq)v. | (49) -

To link up with the FF and ANS formulations, we proceed to break up the internal
displacement field as follows. The assumed i is decomposed into rigid body, constant
strain, and higher order displacements:

4 =N,q, + Neq. + Naqa. (50)
Applying the strain operator D = -}(V-{—Vr) to i we get the associated strain field:
e* = DN,q, + DN.q. + DNxq, = B,q, + B.q, + Baqs- (51)

But B, = DN, vanishes because N, conta.ini_'dnly rigid-body modes. We are also ’
free to select B, = DN, to be the identity matrix 1 if the generalised coordinates q, are
jdentified with the mean (volume-averaged) strain values . Consequently Eq. 51 simplifies
to

, e = +ef =T +Baq, (52)
in which
7 q = ™= (e")v/u, (Bh)v =0, —(53)
" where v = (1)y is the element volume measure. The second relation is obtained by integrat-
ing both sides of Eq. 52 over V and noting that q, is arbitrary. It says that the mean value
of the higher-order displacement-derived strains (also called the deviatoric displacement-
derived strains) is sero over the element.

6.3  Stress Assumption

The stress field will be assumed to be constant over the element:
(@=3W. (54)

This assumption is sufficient to construct high-performance elements based on the
free formulation (FF) developed in Refs. 4-8. As discussed in Ref. 11, the inclusion of
higher order stress modes (deviatoric stresses) iin Eq. 56 is computationally effective if
these modes are divergence free, but such a requirement makes extension to geometrically
nonlinear problems difficult. The only derived field is

(" =& =E"'3). _(55)

14



8.4  Strain Assumptions

The assumed strain field & is split into a mean consta.ﬁt strain € and a higher order
variation (the deviatoric strains):

(E=F+ea=TF+Asa)v, (56)
where ¥ = (&)v /v, matrix Ay collects deviatoric strain modes with mean zero value over
"the element: -
(AJ)V =0, (57
and a collects the corresponding strain mode" amplitudes. The only derived field is
(¢* = E& = E€ + EAqa)v. (58)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

For simplicity we shall assume that all elastic moduli in E are constant over the
element. Inserting the above assumptions into 114 with the modified forcing potential
of Eq. 19 we obtain a quadratic algebraic form, which is block-sparse on account of the
conditions stated in Eqs. 53 and 57. Rendering this form stationary yields the finite element
equations

- juvE~!  qigvl 0 —P7 sisvI-Py -PT LT1 (%) (0)
J'uvl jzsz 0 0 jzsvl 1} o € 0
0 0 jnKu O 0 #sRT O a (]
-P, 0 0 0 0 0 ol{q}={1e},
FsvI—Py  fasvl 0 o jasvE V] (4] [ fou
"Ph 1] leB- o 0 j;;K,,. 0 qn fqh
L L 0 0 0 )] 0 o \ v ) \ f' Y,
(59)
where -
K = (BJEBy)y =K%, Kui=(AZEAJv = K, R=(BiEA4)v,
L=[NL]s, P,=[N%]s, Pc=[NT]s, Pa=[Ni.ls, (60)

7 f, = (Nfb)v, = (Nfb)‘ﬁ &= (sz)vi f, = [Nsilsn
in which Ny, denotes the projection of shape functions N4 on the exterior normal n, and
similarly for N, N, and Nj. Thoee coefficient matrix entries that do not depend on the
- § coefficients come from the last boundary term in Eq. 19. :
7.1 The P Matrices
Application of the divergence theorem to the work of the mean stress on e* yields

(7,e%)v = (7.€“ + Brgy)v = viT e + 7 (Balva, = voTe*

= [Gn, ﬁ]s = [Ta,Neq, + ch"*' Nth]s = ?T(Prqr + P& + Prqy).
Hence P, = 0, P, = vI, P, =0, and the element equations simplify to

(61)

r fvE™l gigel 0 0 (fs—1vl O LTy (7)Y (0)
J1avl J2avE 0 0 Jasvl 1} ] € 0
0 0 K. O 0 #sRT 0O a 0
0 (] o 0 (] 0 0 q,>=wf,,.$.(62)
(13 = 1ol gasul 0 0 jsvE 0 0 1 O fou
0 0 7R O 0 7sKgn O q fon
. / 0 0 O (i} (] o0jlv) L f, ) -




The simplicity of the P matrices is essentially due to the mean-plus-deviator splitting
of Eq. 52 for e®. If this decomposition is not enforced, P, = 0 but P, = (B.)v = vB. and
Pr = (Ba)v.

8. KINEMATIC CONSTRAINTS

The *tricks® we shall consider here are kinematic constraints that play a key role in
the development of high-performance FF and ANS elements. These are matrix relations be-
tween kinematic quantities that are established sndependently of the variational equations.
Two types of relations will be studied.

8.1 Constraints Between Internal and Boundary Displacements

Relations linking the generalized coordinates q of Eq. 48 and the connectors v were
introduced by Bergan and coworkers in conjunction with the free formulation (FF) of finite
elements (see Ref. 5). For simplicity we shall assume that the number of freedoms in v and
q is the same; removal of this restriction is studied in Ref. 11. By collocation of u at the
element node points one easily establishes the relation .

v = G,q, + G.q, + Gadx = Gq, (63)

where G is a square transformation matrix that will be assumed to be nonsingular. On
inverting this relation we obtain

q, H,
q=G"~! =Hyv, or q-{i“} = {H,]v (64)
a Hx

The following relations between L (defined in Eq. 60) and the above submatrices
hold as a consequence of the individual element test described in §9.3:

1TG, =0, LTG,=vI, vH, =L". (85)
If the splitting of Eq. 52 is not enforced, however, the last two become
17G,=vB,, P.H,+PyH,=LT or P.= 17G.. (68)

Since P, = uB,, these relations coalesce (see Ref. 5).
82  Constraints Between Assumed Deviatoric Strains and Boundary Displacements

Constraints linking & to v are of fundamental importance in the assumed natural
strain (ANS) formulation. The effect of these constraints in a variational framework is
analysed in Refs. 15 and 16. In the present study we depart from previous work in that
only the deviatoric strains, €4, are assumed linked to v whereas the mean strains € are
obtained variationally. Consequently we shall postulate the following relation between
assumed deviatoric strain amplitudes and nodal displacement connectors:

a=Qv, (e7)

where Q is generally a rectangular matrix determined by collocation, least squares or
other fitting methods. An example showing the construction of Q is given in §11.4. The
individual element test described in §9.3 requires that Q be orthogonal to G, and Ge:

QG, =0, QG,=0. (68)
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8.3 Limitation Principles

Strain assumptions made concurrently with displacement assumptions are confined
by limitation principles similar to those stated by Fraeijs de Veubeke for stress-displacement
mixed elements (Ref. 13). This issue was discussed in Ref. 15 for a more restricted strain-
displacement hybrid formulation. Limitation principles for the general formulation pre-
sented here remain to be studied.

9. VISIBLE STIFFNESS EQUATIONS

On enforcing the constraints a = Qv,q = H,v,q = Hyv = v-1LTv, and
q, = Hjv, through Lagrange multiplier vectors As, Ar, A and Ay, respectively, we get
the augmented finite element equations

- juvE"? jiavl 0 0 (ju-1vI 0 0 0 0o o LT 1(¥) (0 )
fiavl fvE O O Jasvl 0 o 0 0 O 0 [ o
0 0 K O 0 #RT -1 0 0 0 O a 0
0 0 o o 0 o o0-1 o o O Q, {
(is=1)vl 2l 0 O jasvE o o o0 -1 o O & fee
0 0 juR O [} juKap 0 0 0 -1 O Wq,, b = { fou }
0 o -1 O (1] o 00 0o 0 Q A. 0
0 ° o -I (1 o o0 o o0 H A, 0
0 0 o o -1 o 00 0 O v'LT A, 0
0 0 0 0 (1] -1 @ 0 0 o H, An 1]
[ 1 o o o O o QTHTLEHI o J{v) &)
(e9)

Condensation of allAd:gre:l of freedom except v yields the visible® element stiffness
equations

Ev = (K, +Kp)v=1, (70)
where
K, = v_!LEL7, ' : (71)
Kp = AsHIEaHn + H2s(HYRQ + QTRTH,) + 722Q7 KaaQ, (72)
f=1, + HTf, + v LTl + Hifon. (73)

Following the nomenclature of the free formulation, we shall call K; the basic stiff-
ness matriz and K, the Aigher order stiffness matriz.

9.1 tio i L]
I =J,0fEq. 33, jss=1—7 ja2 = 723 = 0, and we recover the scaled free
formulation stiffness equations considered in Refs. 8, 8 and 10:
E,=(1-9)HKaHs, 1-7>0. (74)

On the other hand, if we take J =Ja as given in Eq. 38, jia =a, fas =3 =0 and

we obtain ,
Ky= QQTK«IQl a>0, (75)
which is similar to the stiffness produced by the ANS hybrid variational formulation studied
in Refs. 15-16, in which the forcing potential P* was used instead of P4. The variant of ANS

% The qualifier visible empharsl;;lr that these are the stiffness equations other elements “see”,
and consequently are the only ones that matter insofar as computer implementation on a
displacement-based finite element program.
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considered herein will be called the assumed natursl deviatoric strain (ANDES) formulation
in the sequel. The name is apt in the sense that what is being assumed are deviatoric rather
than total strains, and that this assumption only affects the higher order stiffness.

But the term with coefficient 33 in Eq. 72 is new. It may be viewed as coupling the
FF and ANDES formulations. It is not known at this time whether Egs. 70-73 represent
the most general structure of the visible stiffness equations of HP elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do £y, feo and fg) on
account of Eqs. 60. If v is known following a finite element solution of the assembled
system, solving Eqs. 69 for the internal degrees of freedom yields :

F=v-LTv, #=Ef, a=Qv, q =Hyv, &=§ q,=Hv,

76
Ao = (EedQ+ HsRTHAY, A =0, X =0, A =(hRQ+ 5 eKnHa)v. (7e)

It is seen that the mean strains €, € and @ = E~17 coincide, and of course so do
the mean stresses. But if the body forces do not vanish the mean stresses and mean strains
recovered from different fields will not generally agree.

It is also worthwhile to note that a nonsero Lagrange maultiplier vector flags a devi-
ation of the associated fields from the variationally consistent fields that would result on
using the unconstrained Eqs. 62 without “tricks”.

9.3  The Individual Element Test

To conclude the general formulation we investigate the conditions under which HP
elements based on the foregoing set!ing pass the individual element test of Bergan and
Hanssen described in Refs. 3-8. To carry out the test, assume that the “free floating”
element® under sero body forces is in a constant stress state oo, which of course is also the
mean stress. Insert the following data in the left-hand side vector of Eq. 69:

F=ogg=7", €= E-lo,, a,=0, q, = arbitrary, e*=a=E"'7, q =0
A =0, A, =0, A; =0, =0, v= G,q, + Go&* = G,.q, + G.E"1e,.
(17)
Premultiply by the coefficient matrix, and demand that all terms on the right-hand
side vanish but for f, = Loo. Then the orthogonality conditions listed in Eqs. 65 and
68 emerge. This form of the patch test is very strong, and it may well be that relaxing
circumstances can be found for specific problems such as shells.

10. DISCUSSION

At this poin it is useful to recapitulate key points of the previous development, and
to connect this material with some of the techniques of Table 2. The chief property of HP
elements constructed with present methods is the decomposition of the element stiffness
equations displayed in Eq. 70; a property that of course subsists at the assembly level.

The basic stiffness matrix has a universal character: as no coefficients 5 appear in

Eq. 71, clearly K, is independent of specific variational principles. Given the constant stress
state introduced in Eq. 54, K; depends only on the assumed boundary motions. It can be
constructed (and programmed) once and for all for each element type. As emphasized in
Ref. 5, the main function of K, is to provide convergence.

The higher order stiffness given in Eq. 72 serves two other functions: stability and

accuracy. The basic stiffness is generally rank-deficient” because its rank cannot exceed

¢ Math;ﬁgiiémy, the entire element boundary is traction-specifled, i.e., S = S..
7 Except in simplex elements, for which K = K.
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that of E; thus a key function of K is to stabilise K by raising its rank to the correct one.
The second function, which has gained importance in recent work, is to increase solution
accuracy for coarse grids. Here is where the j coefficients play the important role noted
in §5.3. These coefficients may vary from element to element, despite the fact that this
variation implies that the variational principle changes from one element to another. Thus
the "element mixability” requirement of Table 1 is fulfilled without tears.

10.1 The Free Formulation

The present methodology was initially pursued to justify variationally the original
FF (v = 0) of Ref. 5 as well as the scaled FF (v # 0) of Refs. 6-8. Thus it is not
surprising that those element construction techniques fit naturally in the present variational
framework by simply taking J = J,. The extended FF described in Ref. 11 aims to
remove the restriction that the dimension of vectors q and v be the same. One of the
techniques advocated to allow dim(q) > dim(v) involves extending Eq. 54 with deviatoric
stress assumptions, and thus requires a generalization of Eqs. 59 and 62. Whether such a
generalisation is practically worthwhile is unclear at this time.

10.2 The ANS Formulation .

The conventional ANS formulation as presented in Refs. 1 and 19 constructs total
strain fields & (not necessarily integrable into displacemeénts u*) gaged through generalised
strain coordinates a as e = Aa. These coordinates are eventually linked to the connectors
v via matrix expressions of the form a = Qv, leading to an element stiffness of the form
K = QTK,.Q, where K, is the generalised stiffness in terms of a. The restriction to
deviatoric strains in §6.4 is motivated by two interrelated factors: (a) the strain-assumed
stiffness “flows” to the higher order stiffness, where it can be naturally scaled by using
J = J,, and even intermixed with FF contributions as Eq. 72 shows; and (b) the basic
stiffness of the element, derived separately, can be used to insure convergence.

10.3 Projectors and S/R Integration
The so-called *B-bar® approach is based on expressing the element strains as®

e=Bv (78)

where E, which cuts off the “harmful® portion of B, is constructed by various ad-hoc
devices such as strain projection, selective and/or uniform reduced integration. These
time-honored schemes are well covered in Ref. 14. They are easily included in the present

setting if B admits the decomposition -

where Q is not position dependent and @ = Bv provides the mean strains, which are
- discarded in favor of Eq. 76. This decomposition can be usually carried out in several

ways.

11. EXAMPLE: A 9-DOF ANDES PLATE BENDING TRIANGLE

The first element constructed with the ANDES formulation is a three-node Kirchhoff
plate-bending flat triangle with the usual nine degrees of freedom. The derivation is briefly
covered here as it illustrates the essential steps in forming the higher order stiffness of such
elements. These steps are outlined in “recipe® form in Table 3. This Table restates the
arguments of §6.4 in a more physically oriented sense, which is closely aligned with the
terminology of Ref. 19.

% This is a slight variation from the usual notation, necessitated by the use of the single overbar
to denote average or mean values.
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Table 3 Construction of K, by the ANDES Formulation

Step 1. Select reference lines (in 2D elements) or reference planes (in 3D
elements) where spatural straingage” locations are to be chosen. By appropriate
interpolation express the element natural strains ¢ in terms of the “straingage
readings” g at those locations:

T=A.8 (80)

where 7 is a strain field in natural coordinates that must include all constant
strain states. (For bending elements the term %gtrains” is to be interpreted in a
generalised sense, viz. curvatures.)

Step 2. Relate the Cartesian strains & to the natural strains:
e=Té=TA.g=Ag (81)

at each point in the element. (Fe=eorifitis possible to work throughout in
natural coordinates, this step is skipped.) )
Step 8.  Split the Cartesian strain field into mean (volume-averaged) and devi-
atoric strains: -
. s=5+es=(A+Ads (82)
where A = (TA/)v /v, and g¢_=\A.dvgwhag,meajn sero value over V. (This step
may also be carried out on the natural strains if T is constant, as is the case for
the element derived here.) o -
Step 4. Relate the natural straingage readings g to the visible degrees of

freedom
g=Qv (83)

where Q is a straingage-to-node displacement transformation matrix. Techniques
by which this is accomplished vary from element to element and is difficult to state
rules that apply to every situation. In the element derived here Q is constructed
by direct interpolation over the reference lines. (In general there is no internal
displacement field u® such that & = Du®, so this step cannot be done by simply
integrating the field of Eq. 81 over the element and collocating u® at the nodes.)

Step 5. The higher-order stiffness matrix is given by

K, =aQTK,Q, where K= /‘: ATEA,dV, (84)

where a > 0 is the scaling coefficient supplied by the functional of Eq. 38.

11.1 Geometric Relationa

The triangle has straight sides. Its geometry is completely defined by the location of
its three corners, which are labeled 1,2,3, moving counterclockwise. The triangle is referred
to a local Cartesian system (z, y) which is taken with origin at the centroid 0, whence
the corner coordinates z;, y; satisfy the relations z; +za + 23 =0and y1 +y2 + ¥ =0.
Coordinate differences are abbreviated by writing z;; = % — %j, etc. The signed triangle
area A is given by the formulas

2A = z3,ys1 — Ta1¥21 = TazY1z — FiaYss = Z13¥zs — F23U1, (85)
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and we require that A > 0. We shall also make use of dimensionless triangular coordinates
$1, $2» $3 linked by the constraint ¢, +¢3+¢3 = 1. The following well known relation between
the area and centroid-originated Cartesian coordinates of a straight-sided triangle is noted:

1 -

G = o (zevm — zey; + 2 + VZhs)s (6)
where 1, 7 and k denote positive cyclic permutations of 1, 2 and 3; for example,t = 2,7 =3,
k = 1. Therefore 3¢;/3z = yjx/2A and 36 /3y = zxj/2A. Other intrinsic dimensions and
ratios used below are

b= o+ vy 0 =2406g b= (mimact wivan)bigs b =i = biis  ggy

Nj = bty = (zagmon + vww) [ (5 + )y = bis/bis = 1= Xaas
where £;; denote the triangle side lengths, a;; are triangle heights, b;; and bj; are projections
of sides tk and jk onto side i3, respectively, and the A’s are ratios of these projections to
the side lengths.
11.2 Displacements, Rotations, Side Coordinates

Since we are dealing with a Kirchhoff element, its displacement field is completely

defined by the transverse displacement w(z, y) = w(s1,2,6s)s positive upwards., The mid-

plane rotations about z and y are 0, = dw/dy and b, = —dw/3z. The visible degrees of
freedom of the element collected in v are )

vVi=[w 0a O w2 03 O3 ws fas Oys]- (88)

Over the three sides 1-2, 2-3 and 3-1, traversed counterclockwise, we define the

dimensionless side coordinates y13, H32s and ps; as follows. Over side 1-2, uy3 varies from

p1z = 0 at corner 1 to p13 = 1 at corner 2; thus py3 = ¢3 when ¢s = 0. Relations for the
other sides follow from cyclic permutation of subscripts. Then

= Z31, = I33, = I13,
a};; ] 8;;, a;;; (89)
=V, T Y " =Y

dp1a

11.3 Natural Curvatures

The second derivatives of w with respect to the dimensionless side directions will
be called the natural curvatures and denoted by xij = 3w/3p?;. Note that they have
dimensions of displacement. The natural curvatures can be related to the Cartesian plate
curvatures K;5 = 33w /372, Kyy = 33w/dy? and xay = 23%w/9z8y, by chain-rule applica-
tion of Eq. 89:

3 3
3 2%
X13 I;m z%g 931 Z21Y21 a;w
x={Xxs = -g;l: = |23, vl Zsaym %;r =T '. (90)
Xs1 azi , 3y vis Tavis . ?2 .
du31 z0y

The inverse of this relation is

3
23

£

T 1 Yy23Y1s Ys1¥a1 V13952 :’;“
%'”* = z"; Z33T1y T31%31 Z12Z32 ] 5“;‘% '
2 2 wa3Zs1 + Taats Ys1%iz +Z1a¥ar V13733 + Z31933 2

0y dp3

(91)
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or, in matrix form
' x=Tx. = (92)

11.4 Curvature Sampling

The reference lines referred to in Table 3 are the three triangle sides. The natural
curvatures are assumed to vary linearly over each reference line, an assumption which is
obviously consistent with cubic beam-like variations of w over the sides. A linear variation
on each side is determined by two straingage sample points, which we chose to be at the
corners.

On each triangle side chose the isoparametric coordinates §;; that vary from —1 at
corner i to +1 at corner j. These are related to the y;; coordinates as §;; = 2ui; — 1. Then
the natural curvature over side ij is given by the beam formula

.
3w 6&;; =08i4 Ons

x""a‘?—,-:t""['éf 36 -1 %'.f 3, +1] w; [’ . )
nj

where 6, denote the rotation about the external normal direction n on side ¢j. Evaluating
these relations at the nodes by setting £;; = *1 and converting normal rotations to z-y
rotations, we build the transformation

¢ wy )
( xn" ) -6 —4dyq; T 4z é 2yn =2z 0 0 0 g’l
X2l 6 2y —2z; -6 4dyn -4z O 0 0 vl

) X”lg | (1] 0 0 -6 f4y33 4z 6 —2ys3 2233 ) ;D: ,
Xas lS (1] 0 0 6 2ysz —2zs3 -6 4ys3 —4z33 9’
Xs1ls 6 —2yi1s 223 O 0 0 -6 —4yzs 41,5 u"’:
| xs1l, ) -6 4y;s —dz;s O 0 0 -6 2y -—2z13 Bas

8,3 |

(94)

The left hand side is the natural straingage reading vector called g in Table 3 and
80 We can express this as the matrix relation

g=Qv. (95)

11.5 Curvature Interpolation

The six gage readings collected in g provide curvatures along the 3 triangle sides
directions at two corners. But 9 values are needed to recover the complete curvature field
over the element. The 3 additional values are the natural curvatures at the missing corner.
We obtain these values by adopting the following rule: Cylindrical bending with linearly
varying curvature along a side direction 13 to be ezactly represented. Another way of stating
this is that the side curvature x;; is to be constant along lines normal to side i7. This makes
the element insensitive to bad aspect ratios on “strip bending” if each element has a side
oriented in the direction of the strip. )

To apply this rule consider side 1-2. The natural curvature x13 = 33 w/du?, along
this side is defined at nodes 1 and 2 by the first two rows of Eq. 94. For node 3 take

3w
X1ls = Fr i A13 X3l + An Xa2lz, (96)
1213
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where A;z and Ag; are defined in Eq. 87. Since we now know the values of x12 = 32w/3pl;
at the three corners we can use the standard linear interpolation over the entire triangle:

x12 = Xaaly 61 + X133 82 + xa3ls s = X1zl (61 + A1ags) + xazly (3 + Aaigs).  (97)
Proceeding analogously for the other two sides we construct the matrix relation

X12 ¢ +Aags G2+ Ang 0 0 0 0
X3 = 0 0 ¢+ Azs61 s+ Asaq 0 0 g8
x31 0 o 0 0 s+Ang 6+
or
x=Axg *==TAg - (99)

Since T is constant we can do Step 3 of Table 3 directly on the natural curvatures.
Now Ay($1,62,$3) is a linear function of the triangular coordinates. Consequently, the
mean natural curvatures can be simply obtained by evaluating A, at the centroid § =
¢ = ¢ = 1/3. Let the corresponding matrix be Ay. Then ¥ = Ayg, and the natural
deviatoric curvatures are given by

Xa = (Ax -i)s, : (100)
which transformed to deviatoric Cartesian curvatures &4 = & — R gives ﬁnnl]y

11.6 The Element Stiffness Matrix

The basic stiffness matrix K, is the same derived in Ref. 8 using the conventional
FF and need not be rederived here. The higher order stiffness matrix is given by Eqs. 84,
which for a plate bending element specialise to o

K, = aQTKuQ = aQ” [ /; AIDA, dA] qQ, (102)

where D is the Cartesian moment-curvature constitutive matrix resulting from the inte-
gration of E through the plate thickness: ‘

Mas D1y Dyz Dis) | Kas
m={ Myy ¢ = Dy3 D2z Das Kyy } = D«. (103)
May Dis Das Dss] \ #ay

Since Ay varies linearly, if D is constant we could numerically integrate K,q in
Eq. 102 exactly with a three point Gauss rule, for example the three midpoint formula.
But as the formation of the element stiffness is dominated by these calculations it is of
interest to derive Eqg in closed form. Such a derivation is provided in Ref. 17.

11.7 Preliminary Evaluation

As of this writing only a sketchy evaluation of the first ANDES element is available.
We have found that for triangles with good aspect ratio its behavior is similar to that of
the scaled FF element of Ref. 8, which is known to be an excellent performer. But the
"ANDES element shows less distortion sensitivity for high aspect ratio elements, as can be
expected from its construction. Additional evaluation details will be reported in Ref. 17.

These preliminary results are encouraging in that we now have two good stand-alone
components (FF and ANDES) of K. Thus it is plausible that a weighted mix of these
formulations as per Eq. 72 can be used to squeése the ultimate in performance for this very
simple element.
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6.

CONCLUSIONS

The results presented in this paper may be summarised as follows.

The classical variational principles of linear elasticity may be embedded in a
parametrised matrix form.

The elasticity principles with independently varied displacements are members of
a three-parameter family. Those principles without independent displacements are
members of a one-parameter family.

Finite element assumptions for constructing high-performance elements may be con-
veniently investigated on this family using hybrid forcing potentials.

Kinematic constraints established outside the realm of the variational principle may
be incorporated through Lagrange multiplier adjunction.

The FF and ANS methods for constructing HP finite elements may be presented
within this augmented variational setting. A variant of ANS, called ANDES, fits nat-
urally the decomposition of the stiffness equations into basic and higher order parts.
In addition, combined FF/ANDES forms emerge from the general parametrized
principle.

The satisfaction of the individual element test yields various orthogonality conditions
that the kinematic constraints should satisfy a priori

The first ANDES element based on this formulation displays encouraging stand-
alone performance as regards distortion gensitivity. The weighted combination of

this element with its FF' counterpart remains a topic for further investigation.
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